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Summary: Cyclopentane formation via _ the intramolecular addition of a cyclic 

vinyllithium reagent to simple alkenes produces a single hydrindane alkylli- 

thium diastereomer that can be trapped with electrophiles. 

The cyclization of reactive organometallic species is becoming an increas- 

ingly popular method of ring formation. 
1 

We recently reported the results of 

our initial studies on the cyclization of vinyllithium reagents derived from 

2,4,6-triisopropylbenzenesulfonyl hydrazones (trisylhydrazones),2 illustrating 

that the reactive vinyllithium nucleophile could be generated cleanly in the 

presence of a primary halide internal electrophile (terminator). In searching 

for other useful terminators for this type of cyclization, the interesting 

mechanistic studies by Bailey3 and by Garst 
4 

of the cyclization of 5-pentenyl- 

lithium and related organometallics prompted us to investigate simple alkenes 

as terminators in vinyllithium cyclization. 

NNHTris Li 

One potentially valuable aspect of this reaction drew our attention at the 

outset; namely, the possibility of trapping the initial cyclization product 

(an alkyllithium species) with electrophiles. Despite the detection of this 

type of cyclized intermediate by NMR in a simple case,3 reaction with electro- 

philes has not been reported. This process, if successful, would be an ex- 

tremely useful complement to existing methodology for functionalized cyclo- 

pentane formation, since intermolecular trapping of the corresponding interme- 

diate in radical cyclizations is limited to a few specialized reagents, 
5 and 

cationic cyclization suffers from the problem that few useful terminators 

reliably and cleanly form 5-membered rings. 
6 

Tempering our initial enthusiasm, however, was the concern that the vinyl- 

lithium cyclization could fail because of a reduced driving force, relative to 
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the reported examples of alkvllithium ring closure. Specifically, literature 

examples involve both conversion of a C-C II bond into 2 C-C (J bonds and a 

primary sp3 
3 

+ sP carbanion interchange. The proposed transformation, on the 

other hand, involves a much less energetically favorable sp2 
3 

+ sP conversion, 
in addition to the same favorable 1 + 0 bond interconversion. For the same 

reason, it also was not obvious whether one would expect kinetic or thermody- 

namic control in cases where diastereomeric products were possible. Some cycli- 

zations of this type were therefore attempted. The results, described in 

this Communication, show that cyclopentanes are indeed formed smoothly in this 

process; that the intermediate cyclopentylmethyllithium intermediate can be 

trapped in fair overall yield; and that hydrindane formation is remarkably 

stereoselective. 

The cyclization precursor 1 was prepared by standard methods, 
7 

and then 

was treated with t-BuLi (2.1 equiv, THF) as described previously. 
2 

The re- 

sulting vinyllithium species _2 underwent cyclization to 3a at approximately - 
the same rate as reported 

XZ- 

1 

by Bailey for the simple parent compound,3 i.e. with 

CH,R CH,E 

5a, R=H (lo-15%) 

b, R=D 

c, R=Br 

cl ii 

3a, R=Li 4 

b R=H 

nMnllrT c+ c v1c11-1 
)-rwvvL I I I - 

da 020 D 87% 

4b Br(CH212Br Br 61% 

4c LnlF CHD 61% 

4d CD2 CDDH 50% 

4 \07 CH2CH2DH 49% 

a half-life of a few minutes at 0°C. Quenching with D20 after 15 minutes at 

O°C gave an 87% yield of the monodeuterio hydrindane j= (-90% deuterium in- 

corporation). Quenching at progressively shorter reaction times resulted in 

increasing amounts of the uncyclized deuterio alkene a. Conversely, longer 

reaction time gave correspondingly lower deuterium incorporation in 4 due to 
8 

competitive protonation (presumably by THF ) of the intermediate alkyllithium 

3a -. Several other common electrophiles also were useful as trapping agents, 

including BrCH2CH2Br, DMF, CO2, and ethylene oxide. 
9 Yields are modest 

because of competitive protonation (by solvent) of the initial vinyllithium 
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species 2 (-10-15s) and of the cyclized alkyllithium intermediate 5 (lo-15%), 

a problem that potentially can be overcome by the use of solvents other than 

THF. 

The most surprising aspect of this cyclization is not that the interme- 

diate 3a can be trapped, - but that a large excess of the "cis" diastereomer $, 

is produced: in all cases shown, the ratio of 2 to its diastereomer is >50:1 - 
by 250 MHz HNMR and capillary CC. This stereoselectivity, in conjunction with 

other evidence, suggests a I-center cyclic transition state (IZEi), a possibil- 

ity that will be addressed in a later paper. The stereochemistry of the major 

product was deduced by 
1 
HNMR analysis of the y-iodolactone (IR 1775 cm-') 

derived from 4d. - Specifically, one of the coupling constants of Ha (J=4, 

1OHz) is too large for the equatorial proton in the locked trans-hydrindane 

(A/B) ring system 1. Conversely, the larger axial-axial coupling constant (10 

Hz) is consistent with the conformer 6& - expected to be the predominent form 

because of the indicated diaxial interactions in the alternative 6a. Note - 
that formation of the alternative diastereomers of $_ and II corresponding to 

attack of I 2 from the opposite face of the respective double bonds, is very 

unlikely because of the resulting strained trans-5,5 (B/C) ring systems. 10 

4d 

6 

Finally, it is instructive to compare the results of this anionic cycliza- 

tion with the analogous radical process. To do so, the vinyl bromide 5c was - 
prepared by "premature" trapping of vinyllithium 2 with dibromoethane, follow- 

ed by treatment with n-Bu3SnH under thermal initiation conditions. 11 

1. I nBu$nH 
SC 

AIBN 

Toluene reflux H H 

(12:4:15:1) 
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Not only is the radical cyclization considerably less stereoselective 

vs., 50:1), but it also produces a considerable amount of the 6-membered 

(-50% vs < 2%).12 This comparison reinforces the point that the anionic 

(3:l 

ring 

pro- 

cess complements existing synthetically useful cyclopentane-forming reactions 

for 3 reasons: (1) stereoselectivity, (2) regioselectivity, and (3) ability 

to trap the cyclized reactive intermediate with a variety of useful electro- 

philes. Other aspects of this type of cyclization are being investigated, 

including other ring sizes, different double bond substitution patterns, and 

asymmetric induction of various types. 
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